Перевод: со всех языков на английский

с английского на все языки

iron-based alloy

  • 1 сплав на железной основе

    2) Metallurgy: iron-base alloy
    3) Automation: ferrous alloy
    4) Combustion gas turbines: ferritic alloy

    Универсальный русско-английский словарь > сплав на железной основе

  • 2 Chevenard, Pierre Antoine Jean Sylvestre

    SUBJECT AREA: Metallurgy
    [br]
    b. 31 December 1888 Thizy, Rhône, France
    d. 15 August 1960 Fontenoy-aux-Roses, France
    [br]
    French metallurgist, inventor of the alloys Elinvar and Platinite and of the method of strengthening nickel-chromium alloys by a precipitate ofNi3Al which provided the basis of all later super-alloy development.
    [br]
    Soon after graduating from the Ecole des Mines at St-Etienne in 1910, Chevenard joined the Société de Commentry Fourchambault et Decazeville at their steelworks at Imphy, where he remained for the whole of his career. Imphy had for some years specialized in the production of nickel steels. From this venture emerged the first austenitic nickel-chromium steel, containing 6 per cent chromium and 22–4 per cent nickel and produced commercially in 1895. Most of the alloys required by Guillaume in his search for the low-expansion alloy Invar were made at Imphy. At the Imphy Research Laboratory, established in 1911, Chevenard conducted research into the development of specialized nickel-based alloys. His first success followed from an observation that some of the ferro-nickels were free from the low-temperature brittleness exhibited by conventional steels. To satisfy the technical requirements of Georges Claude, the French cryogenic pioneer, Chevenard was then able in 1912 to develop an alloy containing 55–60 per cent nickel, 1–3 per cent manganese and 0.2–0.4 per cent carbon. This was ductile down to −190°C, at which temperature carbon steel was very brittle.
    By 1916 Elinvar, a nickel-iron-chromium alloy with an elastic modulus that did not vary appreciably with changes in ambient temperature, had been identified. This found extensive use in horology and instrument manufacture, and even for the production of high-quality tuning forks. Another very popular alloy was Platinite, which had the same coefficient of thermal expansion as platinum and soda glass. It was used in considerable quantities by incandescent-lamp manufacturers for lead-in wires. Other materials developed by Chevenard at this stage to satisfy the requirements of the electrical industry included resistance alloys, base-metal thermocouple combinations, magnetically soft high-permeability alloys, and nickel-aluminium permanent magnet steels of very high coercivity which greatly improved the power and reliability of car magnetos. Thermostatic bimetals of all varieties soon became an important branch of manufacture at Imphy.
    During the remainder of his career at Imphy, Chevenard brilliantly elaborated the work on nickel-chromium-tungsten alloys to make stronger pressure vessels for the Haber and other chemical processes. Another famous alloy that he developed, ATV, contained 35 per cent nickel and 11 per cent chromium and was free from the problem of stress-induced cracking in steam that had hitherto inhibited the development of high-power steam turbines. Between 1912 and 1917, Chevenard recognized the harmful effects of traces of carbon on this type of alloy, and in the immediate postwar years he found efficient methods of scavenging the residual carbon by controlled additions of reactive metals. This led to the development of a range of stabilized austenitic stainless steels which were free from the problems of intercrystalline corrosion and weld decay that then caused so much difficulty to the manufacturers of chemical plant.
    Chevenard soon concluded that only the nickel-chromium system could provide a satisfactory basis for the subsequent development of high-temperature alloys. The first published reference to the strengthening of such materials by additions of aluminium and/or titanium occurs in his UK patent of 1929. This strengthening approach was adopted in the later wartime development in Britain of the Nimonic series of alloys, all of which depended for their high-temperature strength upon the precipitated compound Ni3Al.
    In 1936 he was studying the effect of what is now known as "thermal fatigue", which contributes to the eventual failure of both gas and steam turbines. He then published details of equipment for assessing the susceptibility of nickel-chromium alloys to this type of breakdown by a process of repeated quenching. Around this time he began to make systematic use of the thermo-gravimetrie balance for high-temperature oxidation studies.
    [br]
    Principal Honours and Distinctions
    President, Société de Physique. Commandeur de la Légion d'honneur.
    Bibliography
    1929, Analyse dilatométrique des matériaux, with a preface be C.E.Guillaume, Paris: Dunod (still regarded as the definitive work on this subject).
    The Dictionary of Scientific Biography lists around thirty of his more important publications between 1914 and 1943.
    Further Reading
    "Chevenard, a great French metallurgist", 1960, Acier Fins (Spec.) 36:92–100.
    L.Valluz, 1961, "Notice sur les travaux de Pierre Chevenard, 1888–1960", Paris: Institut de France, Académie des Sciences.
    ASD

    Biographical history of technology > Chevenard, Pierre Antoine Jean Sylvestre

  • 3 Craufurd, Henry William

    SUBJECT AREA: Metallurgy
    [br]
    fl. 1830s
    [br]
    English patentee of the process of coating iron with zinc (galvanized iron).
    [br]
    Although described as Commander of the Royal Navy, other personal details of Craufurd appear to be little known. His process for coating sheet iron with a protective layer of zinc, conveyed as a communication from abroad, was granted a patent in 1837. The details closely resembled, indeed are believed to have been based upon, those developed and patented in France in 1836 by Sorel, who had worked in collaboration with Ledru. There had been French interest in substituting zinc for tin as a coating for iron from 1742 with work by Malouin. Zinc-coated iron saucepans were produced in Rouen in the 1780s, but the work was later abandoned. Craufurd's patent directed that iron objects should be dipped into molten zinc, protected from volatilization by a layer of sal ammoniac (ammonium chloride, NH4Cl which also served as a flux. The quite misleading term "galvanizing" had already been introduced by Sorel for his process. Later its pro-tective properties were discovered to depend for effectiveness on the formation of a thin layer of zinc-iron alloy between the iron sheet and its zinc coating. Craufurd's patent was infringed in England soon after being granted, and was followed by several improvements, particularly those of Edmund Morewood, collaborating with George Rogers in five patents, of which four referred to methods of corrugation. The resulting production of zinc-coated iron implements, together with corrugated iron sheeting quickly adopted for building purposes, developed into an important industry of the West Midlands, Bristol, London and other parts of Britain.
    [br]
    Bibliography
    1837, British patent no. 7,355 (coating sheet iron with zinc).
    Further Reading
    H.W.Dickinson, 1943–4, "A study of galvanised and corrugated sheet metal", Transactions of the Newcomen Society 24:27–36 (the best and most concise account).
    JD

    Biographical history of technology > Craufurd, Henry William

  • 4 на основе

    Русско-английский большой базовый словарь > на основе

  • 5 Rosenhain, Walter

    SUBJECT AREA: Metallurgy
    [br]
    b. 24 August 1875 Berlin, Germany
    d. 17 March 1934 Kingston Hill, Surrey, England
    [br]
    German metallurgist, first Superintendent of the Department of Metallurgy and Metallurgical Chemistry at the National Physical Laboratory, Teddington, Middlesex.
    [br]
    His family emigrated to Australia when he was 5 years old. He was educated at Wesley College, Melbourne, and attended Queen's College, University of Melbourne, graduating in physics and engineering in 1897. As an 1851 Exhibitioner he then spent three years at St John's College, Cambridge, under Sir Alfred Ewing, where he studied the microstructure of deformed metal crystals and abandoned his original intention of becoming a civil engineer. Rosenhain was the first to observe the slip-bands in metal crystals, and in the Bakerian Lecture delivered jointly by Ewing and Rosenhain to the Royal Society in 1899 it was shown that metals deformed plastically by a mechanism involving shear slip along individual crystal planes. From this conception modern ideas on the plasticity and recrystallization of metals rapidly developed. On leaving Cambridge, Rosenhain joined the Birmingham firm of Chance Brothers, where he worked for six years on optical glass and lighthouse-lens systems. A book, Glass Manufacture, written in 1908, derives from this period, during which he continued his metallurgical researches in the evenings in his home laboratory and published several papers on his work.
    In 1906 Rosenhain was appointed Head of the Metallurgical Department of the National Physical Laboratory (NPL), and in 1908 he became the first Superintendent of the new Department of Metallurgy and Metallurgical Chemistry. Many of the techniques he introduced at Teddington were described in his Introduction to Physical Metallurgy, published in 1914. At the outbreak of the First World War, Rosenhain was asked to undertake work in his department on the manufacture of optical glass. This soon made it possible to manufacture optical glass of high quality on an industrial scale in Britain. Much valuable work on refractory materials stemmed from this venture. Rosenhain's early years at the NPL were, however, inseparably linked with his work on light alloys, which between 1912 and the end of the war involved virtually all of the metallurgical staff of the laboratory. The most important end product was the well-known "Y" Alloy (4% copper, 2% nickel and 1.5% magnesium) extensively used for the pistons and cylinder heads of aircraft engines. It was the prototype of the RR series of alloys jointly developed by Rolls Royce and High Duty Alloys. An improved zinc-based die-casting alloy devised by Rosenhain was also used during the war on a large scale for the production of shell fuses.
    After the First World War, much attention was devoted to beryllium, which because of its strength, lightness, and stiffness would, it was hoped, become the airframe material of the future. It remained, however, too brittle for practical use. Other investigations dealt with impurities in copper, gases in aluminium alloys, dental alloys, and the constitution of alloys. During this period, Rosenhain's laboratory became internationally known as a centre of excellence for the determination of accurate equilibrium diagrams.
    [br]
    Principal Honours and Distinctions
    FRS 1913. President, Institute of Metals 1828–30. Iron and Steel Institute Bessemer Medal, Carnegie Medal.
    Bibliography
    1908, Glass Manufacture.
    1914, An Introduction to the Study of Physical Metallurgy, London: Constable. Rosenhain published over 100 research papers.
    Further Reading
    J.L.Haughton, 1934, "The work of Walter Rosenhain", Journal of the Institute of Metals 55(2):17–32.
    ASD

    Biographical history of technology > Rosenhain, Walter

См. также в других словарях:

  • Iron — Fe redirects here. For other uses, see Fe (disambiguation). This article is about the chemical element. For other uses, see Iron (disambiguation). manganese …   Wikipedia

  • Iron Age — This article is about the historical / archaeological period known as the Iron Age. For the mythological Iron Age, see Ages of Man. Iron Age This box: view · talk · …   Wikipedia

  • Iron meteorite — Tamentit Iron Meteorite, found in 1864 in the Sahara Desert,[1] weight about 500 kg. On display at Vulcania park in France …   Wikipedia

  • Iron Man's armor — refers to the powered metal suit worn by Tony Stark when he assumes his superhero role of Iron Man. The first version of the armor was created by Stark with the help of Ho Yinsen. Unlike most other superheroes, the appearance of Stark s armor has …   Wikipedia

  • Iron ore — Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in colour from dark grey, bright yellow, deep purple, to rusty red. The iron itself is usually found in the …   Wikipedia

  • Ductile iron — Iron alloy phases Ferrite (α iron, δ iron) Austenite (γ iron) Pearlite (88% ferrite, 12% cementite) …   Wikipedia

  • Iron Monger — For other uses, see Ironmongery. Iron Monger Obadiah Stane in the Iron Monger armor, artist Mark Bright Publication information …   Wikipedia

  • iron processing — Introduction       use of a smelting process to turn the ore into a form from which products can be fashioned. Included in this article also is a discussion of the mining of iron and of its preparation for smelting.       Iron (Fe) is a… …   Universalium

  • Iron Age sword — Swords made of iron (as opposed to bronze) appear from the Early Iron Age (ca. 12th century BC), but do not become widespread before the 8th century BC.Early iron swords were not comparable to later steel blades. The iron was not quench hardened… …   Wikipedia

  • Iron pillar of Delhi — For other uses, see Ashoka Pillar (disambiguation). The iron pillar of Delhi The iron pillar of Delhi, India, is a 7 m (23 ft) high pillar in the Qutb complex, notable for the composition of the metals used in its construction. The… …   Wikipedia

  • Cast iron — For cookware, see Cast iron cookware. Iron alloy phases Ferrite (α iron, δ iron) Austenite (γ iron) …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»